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We consider a metamaterial possessing nonlinear magnetic response owing to nonlinear electronic compo-
nents inserted into resonant conductive elements. We imply that the insertions operate in an essentially non-
linear regime, so that a nonlinear magnetic susceptibility cannot be introduced and separate analysis is required
for different nonlinear processes. Here we develop an approach for analyzing three-wave coupling processes
with a strong pump wave and two weak signals. We discuss the peculiarities of coupling arising from use of
insertions with variable resistance or variable capacitance. We estimate that extremely strong nonlinear cou-
pling can be achieved using typical diodes reported in the literature.
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I. INTRODUCTION

In the course of several recent years metamaterials have
been attracting vast scientific attention. Initial interest in this
subject was driven by the idea of realizing negative refrac-
tion. Although predicted theoretically by Veselago[1] as
early as in 1967, negative refraction remained an abstract
idea, as it requires the permittivity and permeability both to
be negative, which is nonexistent in natural materials. These
requirements can be met in metamaterials—artificial struc-
tures, arranged as regular lattice of identical elements or sets
of elements. The scale of these structures shifts the working
range of metamaterials from optical frequencies to micro-
waves, but the general description of their electromagnetic
response is the same as for crystals. The design of metama-
terials was discussed[2] and experiments were reported to be
successful[3,4]. At the same time, general electromagnetic
properties of the backward waves in Veselago media re-
ceived a recent review[5].

Obviously, the range of metamaterial applications is not
confined to the demonstration and use of the negative refrac-
tion phenomenon. Rapid development of microwave technol-
ogy suggests elaboration of methods for effective and imme-
diate manipulation with microwaves, and metamaterials
seem to be especially suitable for this purpose, being a kind
of crystal for microwaves. An important advantage is that the
metamaterial properties can be adjusted by choosing the
structure elements and their arrangement.

If the wavelength of the electromagnetic wave inside the
medium is much larger than both the element size and the
distances between neighboring elements, the properties of
the metastructure with respect to such waves can be de-
scribed with the macroscopic permittivity and permeability.
The typical size of a metamaterial’s “atom”(of the order of
millimeters) satisfies this requirement for microwaves up to
the gigahertz range. Earlier we presented a macroscopic de-
scription of a metamaterial organized as a three-dimensional

lattice of resonant conductive elements(RCEs) [6,7]. The
approach described there has much in common with the clas-
sical theory of the optical properties of condensed matter
[8–10].

In view of the close analogy to crystals, metamaterials are
likely to host direct microwave interaction, provided that the
response of the structure elements is nonlinear. The general
idea of assembling a nonlinear artificial medium by introduc-
ing a nonlinear component within the structure elements has
been known since the early 1990s[11], when metamaterials
had not yet emerged. Later, active electronic inclusions were
suggested for enhancement of the negative band in linear
metamaterials[12]. In 2003 two proposals appeared intro-
ducing a magnetically nonlinear metamaterial[7,13], and
since then this concept has attracted increasing attention
[14,15].

In particular, we considered diode insertions into RCEs
and discussed the possibility of three-wave coupling in cor-
responding metamaterials[7]. We have shown that for the
case of small amplitudes of the interacting waves, when the
diodes are driven by relatively low voltage, the nonlinear
response of the metamaterial is described by a quadratic
magnetic susceptibility, which can be explicitly expressed
via the parameters of structure elements and lattice constants.
Accordingly, the magnetization of the medium is given by

M sv2d = x̂Msv2dHsv2d + x̂M
s2dsv2;v0,v1dHsv0dHsv1d,

s1d

wherev0+v1=v2. This provides a general phenomenology
for various nonlinear processes analogous to those known in
optics, and already for weak amplitudes we estimated the
nonlinear modulation to be several orders of magnitude
higher than in crystals. However, dissipation losses are also
remarkable in such media, and the corresponding imaginary
part of the magnetic susceptibility appears to be of the same
order as the nonlinear modulation, limiting the range of pos-
sible applications.

In search for better characteristics we consider below
higher amplitudes of the interacting waves, when an essen-
tially nonlinear range of the insertion characteristic is in-
volved. Under this condition, a universal description(1) of
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the nonlinear properties of the metamaterial is no longer pos-
sible. We have to analyze separately different nonlinear pro-
cesses and to distinguish between various types of nonlinear
insertions.

In this paper we concentrate on the three-wave coupling
for a particular class of processes when only one of the
waves is a strong pump wave, while the other two are weak
signal waves. Among these are parametric amplification, fre-
quency conversion, parametric instability, etc. We analyze
the coupling strength arising with use of nonlinear insertions
possessing variable resistance and variable capacitance.

II. NONLINEAR COUPLING WITH INSERTIONS AT HIGH
NONLINEARITY

Considering nonlinear coupling in a metamaterial, we are
interested in the relationship between the magnetization of
the metamaterial and the macroscopic magnetic fields inside
it, at all the frequencies involved. The magnetization is de-
termined by the currents induced in RCEs by the fields of
propagating waves. Should the response of the RCE be non-
linear, a coupling between these currents arises. Conse-
quently, in a metamaterial of RCEs with nonlinear insertions,
wave coupling is provided on the level of the structure ele-
ments. Thus we are first looking for the relationship between
the currents induced at the interacting frequencies, by ana-
lyzing a single element, subjected to an oscillating magnetic
field.

As in our previous work, we are concerned with arbitrary
flat RCEs. If the dimensions of the RCE are smaller than the
wavelength, then the element can be described by a linear
contour with effective resistanceRc, self-inductanceLc, and
capacitanceCc. These parameters can be either estimated
theoretically[6] or evaluated experimentally[16]. Note that
such consideration is appropriate for complex elements like a
split ring resonator[2,16,17], as such an element can be rep-
resented by an effective contour, provided that the width of
the stripes is small enough compared to the element size
[18,19]. Accordingly, the linear properties of the element are
described by the impedanceZsvd=Rc− ivLc+ isvCcd−1, so
that a harmonic emf with amplitudeE, magnetically induced
at frequencyv, drives a harmonic current with amplitudeI in
accordance withE=ZsvdI.

Now we take into account the nonlinear insertions, con-
nected in series to the linear contour. When the insertions
operate in the highly nonlinear regime, the resulting time
dependencies of voltages and currents in general do not have
to be harmonic. In order to deal with harmonic interacting
waves in a metamaterial, we assume that the contribution of
insertions to the response of the structure element is small.
Under this assumption, we neglect inharmonicity of the cur-
rent Istd driven in the RCE by the harmonic emf. In the
following we keep only components relevant for three-wave
coupling(with frequenciesv0+v1=v2 involved), writing the
total current as

Istd = o
k=0

2

I skdstd, I skdstd = Ike
−ivkt + c.c. s2d

A nonlinear insertion can be generally described with a
voltage-dependent resistanceRsUd and capacitanceCsUd.
Then the voltage drop on the insertionUstd, caused byIstd, is

Ustd = R„Ustd…Istd +
1

C„Ustd…E−`

t

Istddt. s3d

Obviously, even with a harmonic current, this voltage drop is
not represented by harmonic oscillations. Therefore, for
strong pumping atv0 we have to assume in general an arbi-
trary 2p /v0-periodic time dependenceUs0dstd, having a com-
ponent atv0 plus higher harmonics; this dependence can be
found for particular insertions as explained below. In con-
trast, in a linear approximation with respect to weak signal
waves, it is sufficient to take into account only the main
harmonics ofUstd at v1 and v2, so that we can summarize
the voltage drop, relevant for three-wave coupling, as

Ustd = Us0dstd + o
k=1,2

Uskdstd s4d

with Uskdstd = Uke
−ivkt + c.c. only fork = 1,2.

Because of nonlinear interaction, the voltagesUk are de-
termined by the currents at all the frequencies involved. In
order to determine the coupling strength, we have to express
Uk explicitly via these currents. In general, the dependence
of Ustd on Istd is mapped by a functionalU=UfIg, resulting
from the solution of the transcendental equation(3). Whereas
no analytical solution can be obtained for that equation in
general, under the assumption of strong pumpingI0@ I1,2 we
can perform an expansion with respect toI1,I2, keeping only
terms linear inI1,I2. This results in general coupling equa-
tions

U2 = I2X22sI0d + I1X21sI0d,

U1 = I1X11sI0d + I2X12sI0d, s5d

where theX factors depend nonlinearly on the pump ampli-
tude; their particular form is determined by the characteris-
tics of the nonlinear insertionsRsUd ,CsUd, as discussed in
detail in the following sections. Provided that we know theX
factors, nonlinear coupling betweenU1,U2 and I1,I2 is then
found.

Next, we return to the response of the whole metamate-
rial. In accordance with the macroscopic approach(see Ref.
[6]), in analyzing the electromagnetic wave interaction with
the metastructure we assume that the response is formed at
distances much smaller than the wavelength. The corre-
sponding quasistatic limit allows us to separate magnetic and
electric effects, so that only the magnetic field affects the
magnetization of the metamaterial, which defines the mag-
netic susceptibility. At this scale, we can also neglect the
inhomogeneity of magnetization and averaged fields and the
problem is reduced to the behavior of a RCE array in an
external homogeneous oscillating magnetic field.

We consider an array of identical RCEs, arranged as a
regular three-dimensional(3D) lattice, so that all the ele-
ments lie in parallel planes normal to thez axis and all have
the same surroundings. Then only thez components of mag-
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netic field and thezz components of magnetic susceptibility
tensor are relevant, and below we omit all appearingz andzz
indices.

Obviously, in a homogeneous medium under the action of
an external homogeneous fieldHsvd, all RCEs are in the
same situation. Thus the same emf

Esvd = im0SvHsvd s6d

is induced in every element, driving the same currents,
which, we recall, are assumed to be also harmonic. In Eq.
(6), S is the effective area of the RCE contour, which deter-
mines the magnetic flux via the element.

Upon taking into account the mutual interaction of the
elements, as reported in detail in[6,7], we introduce the total
effective impedanceZSsvd. Since the mutual interaction is
linear, it affects only the linear properties of RCEs. Then for
the frequencies of weak signal waves we can write the ex-
tended impedance equations

Ek = ZSsvkdIk + Uk, k = 1,2, s7d

where the nonlinear contribution results in additional volt-
agesUk, given by Eq.(5), andEk implies the emf induced
solely by the external field at frequencyvk.

Now, using Eq.(6), we combine the systems(5) and (7),
and rewrite them to obtain coupling equations for the mag-
netization of the metamaterial,Msvkd, which is given by the
density of the corresponding magnetic momentsnSIk (where
n is the volume density of the RCEs):

Msv2d =
iv2nS2Hsv2d − X21Msv1d

ZSsv2d + X22
. s8d

Here and below we write only thev2 components for sim-
plicity; expressions forv1 are the same except for inter-
changed indices 1↔2.

We recall that by definition the magnetic inductionB is
proportional to the spatially averaged microscopic magnetic
field: B=m0kHmicl. As was shown in[6], corresponding vol-
ume integration gives generallyB=m0sH+ 2

3Md notwith-
standing the structure element’s peculiarities. With the gen-
eral definitionB=m0sH+Md, we can express the externally
applied fieldH via the macroscopic magnetic fieldH inside
the medium:H=H+ 1

3M. Then we finally solve Eq.(8) for
M, expressing the magnetization via the macroscopic fields
Hsvd inside the metamaterial in the following form:

Msv2d = xMsv2dHsv2d + Ysv2;H0,v0,v1dHsv1d. s9d

The linear magnetic susceptibility here is given by

xMsv2d =
m0nS2v2

−
1

3
m0nS2v2 − ifZSsv2d + X22sI0dg

. s10d

Note that it is modulated due to the insertion contribution.
Thus, the linear properties of the metamaterial at the signal
frequencies are dependent on the pump field amplitude. This
feature represents a valuable tuning effect, the details of
which will be published elsewhere.

The dimensionless factor

Ysv2,H0,v0,v1d =
iX21sI0d
m0nS2v2

xMsv2dxMsv1d s11d

defines the nonlinear modulation of the magnetic susceptibil-
ity, and for completeness we have only to express the pump
current amplitudeI0 via the pump field amplitudeH0. For
strong pumping at one frequency, an additional nonlinear
contribution from signal waves toMsv0d and toxMsv0d can
be neglected, so thatMsv0d=xMsv0dHsv0d and then

I0 =
xMsv0d

nS
H0. s12d

Equation(11) with relation(12) describe then the strength of
nonlinear coupling between the interacting waves.

The expression(9) is analogous to(1), with the notable
distinction that the dependence of the nonlinear modulation
on H0 is no longer linear, but is included in the modulation
coefficientYsv2;H0,v0,v1d via theX21 factor. In the limit of
weak nonlinearity, theX factors can be easily calculated ana-
lytically, leading to linear dependence onH0 in agreement
with Eq. (1), and then Eqs.(10) and (11) coincide with the
results reported in Ref.[7].

Considering application capabilities of the metamaterial,
it is important to keep in mind that energy dissipation can be
essential, especially for insertions with variable resistance.
For nonlinear coupling in the form(9), the rate of the energy
exchange between the interacting waves depends on the
modulation coefficientY, whereas the wave energy dissipa-
tion is determined by the imaginary part of the linear suscep-
tibility. Therefore, in order to enable efficient nonlinear pro-
cesses, ImfxMsvdg should not exceedY. Provided that the
contribution of insertions is small compared to the linear
contour response, we can safely assume that the overall dis-
sipation is small and ImfxMsvdg!RefxMsvdg. This entitles
us to use the approximation

ImfxMsv2dg < uxMsv2du2
RefX22g
m0nS2v2

, s13d

where we also imply that the resistanceRc of the linear part
of the RCE contour is negligible compared to that of the
insertion, RefX22g.

In the following sections we analyze the details of calcu-
lating X factors for particular types of insertions and estimate
the magnitudes of the nonlinear modulations achievable with
use of nonlinear devices reported in the literature.

III. INSERTIONS WITH VARIABLE RESISTANCE

A. Nonlinear modulation

Analyzing the behavior of a diode with variable resis-
tance, inserted into a RCE, we can simplify the general equa-
tion (3), which lacks a capacitive term for this case, imme-
diately describing the current-voltage characteristic by an
arbitrary functionUsId. This function can be approximated
analytically or mapped using direct measurements for a par-
ticular insertion. The voltage drop on the insertion is then
determined by this function, taken withI given by Eq.(2).
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Expanding it up to terms linear with respect toI1,I2, we
obtain

Ustd = U„I s0dstd… + U8„I s0dstd…sI1e
−iv1t + I2e

−iv2t + c.c.d,

s14d

whereU8 denotesdU /dI. Combining together all the terms
with v2, we arrive directly at the form(5), e.g.,

U2 = I2X22sI0d + I1X21sI0d s15d

where theX factors can be calculated, for a givenUsId de-
pendence, as the zero and first Fourier coefficients of the
U8 (I s0dstd) function:

X22sI0d =
v0

2p
E

0

2p/v0

U8„I s0dstd…dt, s16d

X21sI0d =
v0

2p
E

0

2p/v0

U8„I s0dstd…e−iv0tdt. s17d

Then the nonlinear modulation(11) and dissipation(13) can
be obtained for particular insertion characteristics and
metamaterial parameters.

B. Practical estimates for backward diodes

To make use of variable resistance, we suggest employing
backward diodes. They are notable for high sensitivity,

which would enable relatively low pump amplitudes, and are
commonly used in the operational range around zero voltage,
requiring no additional bias.

The characteristics of particular backward diodes may
vary essentially, but here we would like to give merely quali-
tative estimates. To choose some particular parameters we
refer to a typical set of InGaAs diodes, reported to be de-
signed for high nonlinearity[20]. The current-voltage char-
acteristics demonstrated there have a different appearance,
but what is essential for nonlinear effects is the curvature of
the current-voltage dependence, while the scaling along ei-
ther axisper seis not relevant for comparative analysis.

Accordingly, we model a set of current-voltage character-
istics by functionsJsUd, which show qualitative agreement
with the experimental curves[20] within the intended oper-
ating range[Fig. 1(a)]. All the functions have the same initial
slope, corresponding to 10V zero-bias resistance(which im-
plies 10−2−10−3 mm2 diode cross section).

To calculate theX factors, we imply, in accordance with
the above assumptions, that the diode in the RCE is forced to
an external harmonic pump currentI s0dstd, and for this cur-
rent we obtainUstd by solvingJ(Ustd)= I s0dstd numerically.

To estimate the resulting nonlinear modulation(11), we
take the example of a metamaterial similar to that of Ref.[6],
with circular RCEs with 5 mm radius and 1 mm wire diam-
eter, arranged in parallel planes with tetragonal symmetry
with 2.2 radii in-layer spacing and half radius interlayer

FIG. 1. Backward diodes as nonlinear insertions:(a) model current-voltage characteristics with(solid and dash lines) and without(dot
and dash-dot lines) negative resistance range(see the text for details); corresponding dependencies on the pump field amplitudeH0 of (b)
nonlinear modulationY, (c) dissipation ImfxMsvdg, and(d) figure of meritY/ ImfxMsvdg.
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spacing. Such RCE dimensions provide self-inductance of
about 12 nH; choosing a contour capacitance about 0.02 pF
we arrive at the single element resonance frequency of 2p
31010 rad/s. With the above lattice constants, the resonance
frequency of the effective magnetic susceptibility occurs at
1.2p31010 rad/s. We assume that the metamaterial is em-
ployed below resonance, so thatxMsv1d ,xMsv2d are of the
order of unity. This corresponds to wavelengths of the order
of 10 cm, quite acceptable for the chosen RCE size.

In Fig. 1(b) we plot the nonlinear modulation
uYsv2,H0,v0,v1du as a function of pump field amplitudeH0,
for each of the modeled current-voltage characteristics
shown in Fig. 1(a). It is remarkable that these dependencies
have a qualitatively different appearance: for the characteris-
tics having a “negative resistance” range[Fig. 1(a), solid and
dash lines] sharp pronounced maxima are obtained, while for
those that are monotonic[Fig. 1(a), dot and dash-dot lines]
the maxima are smooth.

Such behavior is expected from the expression(17) for
theX21 factor, responsible for nonlinearity. Indeed, this factor
is determined by the integration overU8sId values. The
current-voltage characteristics of the first type have pointsI`

where U8sId tends to infinity. They correspond to unstable
states of the diode, so when the current amplitude is larger
than I`, they are rapidly crossed byIstd in a hysteresislike
way, and do not contribute much to the integral. However,
the closer is the amplitude toI`, the more time the diode
spends in the state with highU8sId values[because the oscil-
lating Istd is around the turning point there]. In an ideal case,
whenI0 matchesI` exactly,X21 would tend to infinity, and so
would the nonlinear modulation. Obviously, this condition
cannot be reached in reality due to unavoidable inhomoge-
neity of the diodes, RCEs, their arrangement, etc., otherwise
negligible. Moreover, significant increase in the effective di-
ode resistance for signal waves would make the approach
presented here inappropriate, as the requirement of weak in-
sertion contribution would not hold. In principle, this situa-
tion could give rise to numerous interesting effects, investi-
gation of which is, however, beyond the aim of this paper.
Supposing that all the limitations would not allow extremely
high X factors, we still expect that nonlinearity observed in
real systems will be rather sensitive to the pump amplitude in
the narrow range aroundI`.

In contrast, for monotonic characteristics no such pecu-
liarities are expected, and smooth maxima are reached when
the current amplitudes are in the range whereU8sId has maxi-
mal values.

As seen from Fig. 1(b), an exceptionally high nonlinear
modulation, about 0.05 and more, can be achieved with mod-
erate pump fields, about 1 A/m.

Note that theX22 factor(16), responsible for dissipation in
the metamaterial, also involves integration overU8sId. There-
fore, ImfxMsvdg (13) shows similar behavior with respect to
pump amplitudes[Fig. 1(c)]. In the limit of zero pumping, it
is determined by the zero-bias resistance, as expected.

The results in Fig. 1(b) and Fig. 1(c) show that both non-
linearity modulation Y and dissipation, characterized by
ImfxMsvdg, not only have qualitatively similar dependence
on I0, but also reach comparable magnitudes. In Fig. 1(d) we

plot the ratiosuYsv2,H0,v0,v1du / ImfxMsv2dg. These ratios
appear to be below unity for all the current-voltage charac-
teristics; this is not surprising in view of the resistive nature
of the nonlinearity. This feature might limit the application of
backward diodes in metamaterials designed for nonlinear
processes concerned with wave coupling. On the other hand,
it is quite useful for other applications like tunable metama-
terials, analysis of which will be published elsewhere.

Insertions with variable capacitance, which are discussed
below, possess a different nonlinearity origin and are, there-
fore, free from this limitation.

IV. INSERTIONS WITH VARIABLE CAPACITANCE

A. Nonlinear modulation

We assume such an insertion to possess a voltage-
dependent capacitanceCsUd and constant resistive lossesR.
Although the latter holds only for particular varactors[22],
as long as the quality factor is high at the frequencies con-
cerned,R! u1/svCdu, the resistance does not provide a re-
markable contribution to the nonlinear modulation. Thus, we
neglect theRsUd dependence in Eq.(3) for simplicity. Then
the voltage drop at the insertion obeys the equation

Ustd = RIstd +
1

C„Ustd…E−`

t

Istddt, s18d

and we have to analyze it with current(2) and voltage(4).
We recall that the pumping is expected to be only slightly
distorted by the insertion, so thatI s0dstd@ I s1,2dstd and
Us0dstd@Us1,2dstd. Therefore, in order to determine the volt-
age drop caused by pumping we take into account only
Us0dstd and the harmonicI s0dstd in Eq. (18). Then we arrive at
a transcendental equation

Us0dstd = RsI0e
−iv0t + c.c.d +

1

C„Us0dstd…S I0e
−iv0t

− iv0
+ c.c.D ,

s19d

which can be solved numerically for a givenCsUd depen-
dence. In general, this results inUs0dstd having components at
v0 and its multiples.

Next, considering Eq.(18) for signal components, in the
linear approximation we can perform an expansion

1

C„Ustd…
<

1

C„Us0dstd…
+ S 1

C„Us0dstd…D8

3

sU1e
−iv1t + U2e

−iv2t + c.c.d, s20d

where we denote

S 1

C„Us0dstd…D8
; U d

dU
S 1

CsUdDUU=Us0dstd
.

For a knownUs0dstd function, both fractions in Eq.(20) can
be written as the corresponding Fourier expansions

1

C„Us0dstd…
= o

n=0

`

Kne
−inv0t + c.c.,
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S 1

C„Us0dstd…D8
= o

n=0

`

Gne
−inv0t + c.c., s21d

with Fourier coefficients

Kn =
v0

2p
E

0

2p/v0 1

C„Us0dstd…
e−inv0tdt,

Gn =
v0

2p
E

0

2p/v0 S 1

C„Us0dstd…D8
e−inv0tdt. s22d

Now we can insert the obtained expansions(21) into Eq.
(18), and combine the terms contributing atv1 andv2, tak-
ing v0+v1=v2 into account. Keeping only the terms linear
with respect toI1, I2, U1, U2 provides us with a linear system
of equations, which is omitted here owing to its cumbersome
appearance; it can be solved straightforwardly, enabling us to
expressU2 via I1 and I2 in the form (5), with the X factors
given, upon algebraic simplification, by

X21 =
v0

v1

G0I0sK0 − iv1Rd − K1siv0 − G1I0
* + G1

* I0d

siv0 − G1I0
* + G1

* I0d2 + G0
2I0I0

* ,

s23d

X22 =
v0

v2

G0I0K1 − sK0 − iv2Rdsiv0 − G1I0
* + G1

* I0d

siv0 − G1I0
* + G1

* I0d2 + G0
2I0I0

* .

s24d

Then the nonlinear modulation(11) and dissipation(13) can
be calculated for particular metamaterial parameters.

B. Practical estimates for varactors

Obviously, varactors appropriate for practical realization
of the three-wave coupling have to possess a nonsymmetric
capacitance-voltage characteristic. An overview of recent
publications[21–24] allows us to infer that such devices are
available for application in the gigahertz range with good
enough quality factors. Without going into details of particu-
lar data, in the illustrative estimates below we rely on typical
parameters[22] and model capacitance-voltage characteris-
tics by a set of algebraicCsUd functions[Fig. 2(a)]. We as-
sign the same zero-bias capacitanceC0=0.2 pF (so thatC0
@Cc) and the same sensitivity to voltage to all the functions,
as changing these parameters results only in scaling without
qualitative difference in the nonlinear response we are look-
ing for. Instead, we have chosen to vary the ratio of the
capacitanceC1, observed at a certain large voltage, toC0.

In Fig. 2(b) we plot the nonlinear modulation as a func-
tion of pump field amplitude, calculated for each of the mod-
eled functions. It shows significant increase as the pump am-
plitude exceeds a certain value. It is notable that the
sensitivity of nonlinear modulation to the pumping depends
remarkably on theC1/C0 ratio, with YsH0d being much
steeper for a merely 2-3 times lower ratio. With the accepted
practical parameters(see Sec. III B) we estimate that enor-
mous nonlinear modulation of the order of 0.1 is achievable
with quite feasible field amplitudes, about 0.2–0.5 A/m.

The data in Fig. 2 suggest even higher modulation, but
this is not acceptable within the frame of approach presented
here. Already a 10% modulation is incomparably higher than
the magnitudes known in optics. This implies that such a
metamaterial can be effective with by far less optimal param-
eters than those taken for estimates here.

For comparison, we also plot ImfxMsvdg, assuming the
quality factor of the varactor itself to be about 100[Fig. 2(b),
gray line]. We see that dissipation does not depend markedly
on the pumping, which is not surprising when theRsId de-
pendence is negligible. This means, in particular, that with
poorer quality factors nonlinear modulation that exceeds
losses still can be obtained, though with more intense pump-
ing.

Despite these promising estimates, varactor diodes have
some disadvantages; namely, they experience avalanche
breakdown at moderate voltage, and they often have subdued
performance at high frequencies. This limits either the suit-
able field amplitudes and therefore, achievable nonlinearity,
or the range of operating frequencies.

The abovementioned disadvantages of varactors are over-
come in variable capacitance devices based on ferroelectric

FIG. 2. Varactor diodes as nonlinear insertions:(a) model
capacitance-voltage characteristics withC1/C0 ratios 0.2 (solid),
0.3 (dash), 0.5 (dot); (b) corresponding nonlinear modulationYsH0d
and dissipation ImfxMsvdg (gray line).
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films [25,26]. These can tolerate much higher voltages and
can be employed at frequencies up to the terahertz range,
which are even higher than presently intended for metama-
terials. However, varactors based on ferroelectric films pos-
sess symmetric capacitance-voltage characteristics, and
therefore require an additional bias in order to be employed
in three-wave coupling processes.

A way conventional in electronics to bias a diode by
means of an external voltage supply might be acceptable for
a single RCE or a planar configuration[27], but is hardly
ever realizable in 3D metamaterials. We propose, instead, to
bias the diode with a voltage drop caused by an emf, induced
in the RCE by an additional external magnetic fieldHbstd,
varying at times much larger than the period of the interact-
ing signals.

From typical data[26], used for estimates below, we pre-
sume that the required bias voltageUb is of the order of
volts. To estimate the corresponding external biasing field we
note that for a slowly varying field, the induced emfEbstd=

−m0SḢbstd entirely results in voltage drops on the capaci-

tancesCc of the RCE contour andCsUbd of the diode. Then
the voltage on the diode is given by

Ub = −
Cc

CsUbd + Cc
m0SḢb,

from which characteristicḢb amplitudes are obtained. With

CsUbd /Cc,10 we arrive at Ḣb,10−11 A/ sm sd, which
means, for instance, fields about 1000 A/m varying at a
characteristic time about 10 ns.

For a qualitative illustration, we modelCsUd dependen-
cies, similar to those in Ref.[26], with simple functions,
shifted (biased) from symmetrical with respect to theU=0
position. The maximal capacitanceC0 is kept the same for all
the functions, while either the “minimal” capacitanceC1
[Fig. 3(a)] or bias[Fig. 4(a)], is the variable parameter. The
corresponding dependencies of the nonlinear modulation on
the pump field intensity, calculated for these sets of func-
tions, are plotted in Fig. 3(b) and Fig. 4(b), respectively. We
do not plot ImfxMsvdg there, as it demonstrates similar be-
havior as in Fig. 2, being much smaller than the achievable
nonlinearity.

FIG. 3. Biased ferroelectric films as nonlinear insertions:(a)
model capacitance-voltage characteristics, withC1/C0 ratios 0.2
(solid), 0.25(dash), 0.3 (dot); (b) corresponding nonlinear modula-
tion YsH0d.

FIG. 4. Controlling nonlinearity by bias:(a) model capacitance-
voltage characteristicssC1/C0=0.3d; (b) corresponding nonlinear
modulationYsH0d. Ferroelectric films are biased by 1 V(solid),
2 V (dash), 3 V (dot), 4 V (dash-dot).
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Figure 3(b) shows that the nonlinear modulation grows
essentially with increasing pump amplitude above a certain
value, which is independent of theC1/C0 ratio, while the rate
of nonlinearity growth is remarkably sensitive to this ratio.
This behavior is analogous to what occurs for nonsymmetric
varactor diodes; it is not surprising, as the modelCsUd func-
tions are qualitatively similar in these two cases. The excep-
tional modulation of the order of 0.1 is reached here at larger
pump amplitudes, in accordance with higher operating volt-
ages for devices based on ferroelectric films.

Increasing bias, as shown in Fig. 4(b), results in lower
pump fields required to achieve essential nonlinearity. This
enables controlling the strength of nonlinear coupling: vary-
ing the biasing field with a fixed pump intensity leads to
significant change in the nonlinear modulation. Such tuning
of the nonlinear response has no direct analogy in optical
crystals and represents an example of the advantageous con-
trollability of the metamaterial.

V. DISCUSSION

In summary, we developed an approach for calculating
the nonlinear modulation of magnetic susceptibility in a
metamaterial with insertions operating in an essentially non-
linear regime. We have shown that the dependence of the
modulation on the pump field amplitude is remarkably non-
linear, with the peculiarities determined by the type of inser-
tion and its particular characteristics.

Practical estimates, relying on the diodes’ characteristics
reported in the current literature, predict that exceptionally
high nonlinear modulation of magnetic susceptibility, up to
0.1, can be achieved. Such an enormous value exceeds by
many orders of magnitude nonlinearities known in optics.
Note that in the illustrative examples we neither claim to
have chosen optimal insertion properties, nor intend to sug-
gest necessarily the particular diodes, mentioned above, for
practice. We rather propose a universal method for deriving
metamaterial properties from the known characteristics of
insertions, whichever appear appropriate for experiment.
General recommendations for choosing them, however, can
be acquired already from the illustrations here.

We point out a valuable advantage that in the considered
metamaterial the nonlinear response can be tuned by apply-
ing an external varying magnetic field. This feature, having
no direct analogy in optics, can offer additional improve-
ments to conventional nonlinear applications as well as new
unusual techniques.

We believe that the approach developed here represents
the basis for analysis of metamaterials with nonlinear inser-
tions, and that it can be further extended in order to describe
other kinds of nonlinear processes.
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